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Abstract

We propose a method to detect a target in a passive
bistatic polarimetric radar network, with weather
surveillance radar as our illuminator of opportunity
(IO). We build our signal model using electromag-
netic vector sensors (EMVS) as the receiver, which
captures the reflections from a point-like target
present in the scene of interest, surrounded with
strong clutter. We develop a generalized likelihood
ratio test (GLRT) detector which is constant false
alarm rate (CFAR) under asymptotic conditions.
The proposed detector is robust against the inho-
mogeneous clutter.

Problem Description and Contributions

Goal:
•Target detection in a passive bistatic polarimetric radar
network.
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Figure 1: An illustration of passive bistatic weather radar.

Contributions:
•No previous work on bistatic radar addressed employing a
weather radar for target detection with unknown
signal-subspace.

•First to consider polarization information for mitigating
signal-dependent clutter.

Motivation

Coverage area:
•There are 150 nearly identical dual-polarized S-band
Doppler weather surveillance radars in the USA, with an
observation range of 230− 460 km and a range resolution of
0.25− 1 km, depending on the mode of operation.

Modeling:
• Lack of statistical signal model that considers
signal-dependent clutter model for target detection with
weather surveillance radar as IO.

Polarized receivers:
•Exploiting the polarimetric information about the target
with the help of diversely polarized antennas such as EMVS.

Signal Model

•The surveillance path received signal for a weather radar
transmitter and EMVS receiver can be represented as

y = BSxp︸ ︷︷ ︸
target signal

+ ASxc︸ ︷︷ ︸
clutter signal

+ e︸︷︷︸
noise signal

, (1)

where
• s = [s(0), . . . , s(N − 1)]T : transmitted signal vector,
• ε̄α,β: transmitted signal polarization information,
•S = s⊗ ε̄α,β ∈ CM×P : signal information matrix,
•Dn,ω = LN(ω)FH

N LN(−2πn/N)FN : delay-Doppler
matrix,

•FN ∈ CN×N : unitary discrete Fourier transform (DFT)
matrix,

•LN(x) = diag{ej(0)x, ej(1)x, . . . , ej(N−1)x}: diagonal
matrix,

•Dθ,φ ∈ C6×2: EMVS steering matrix,
•A = Dnc,0 ⊗Dθ,φ ∈ CL×M and AHA = kIM ,
•B = Dnp,ωD ⊗Dθ,φ ∈ CL×M and BHB = kIM .
• EMVS receiver: L = 6N , M = 2N , P = 4, and k = 2.

Statistics

•The target detection problem formulated as a hypothesis
testing problem is given as

H0 : yd ∼ CN
(
0,ASΣSHAH + σIL

)
H1 : yd ∼ CN

(
BSµ,ASΣSHAH + σIL

)
,

(2)

where
• d ∈ {1, . . . , D} represents the snapshot index,
•S is deterministic and unknown signal information
matrix,

• scattering coefficients of the clutter, xc, are assumed to be
distributed as zero mean complex Gaussian random
vectors with unknown covariance matrices denoted as Σ,

• polarimetric scattering matrix of the target is rearranged
in a coefficient vector, which is assumed deterministic and
unknown, i.e., E[xp] = µ is unknown, and

• receiver noise vector, e, is a zero mean complex Gaussian
random vector with covariance σIL, where we assume σ is
known.

Important Results

Lemma 1: The Hermitian matrix Σ that maximizes −D[L lnπ + ln |Γ| + Tr{Γ−1R}] where Γ = ASΣSHAH + σIL is the
true covariance matrix, R is the sample covariance matrix, L is the number of samples, and D is the number of snapshots, is
given as Σ̂ = (AS)†R(AS)†H − σ(SHAHAS).
Lemma 2: For sufficiently large number of snapshots D, σ−1 Tr{P⊥ASR} ≈ L − P where P⊥AS is the orthogonal projection
matrix and rank(S) = rank(PAS) = P .
Lemma 3: The Unitary matrix S that maximizes −D[L+L lnπ+ (L−P ) lnσ+ ln |SHAHRAS|− ln |SHAHAS|] is given
by W1, where WΞWH is the orthogonal factorization of AHRA, W is an orthogonal matrix partitioned as [W1,W2], such
thatW1 ∈ CM×P andW2 ∈ CM×(L−P ), andW1 represents the eigenvectors corresponding to P largest eigenvalues.
Lemma 4: The maximum likelihood estimate of µ in ln

∣∣∣SHAHR1AS
∣∣∣, where R1 = 1

D

∑D
d=1(yd −BSµ)(yd −BSµ)H is

given as µ̂ = (BS)†ȳ, where ȳ = 1
D

∑D
d=1 yd.

Generalized Likelihood Ratio Test

•We use generalized likelihood ratio test to solve the
hypothesis testing problem in (2). Using Lemma 1–4, the
test statistic of the hypothesis testing problem in (2) can be
simplified to

ξ = z̄HR−1
z z̄, (3)

where zd = UH
1 A

Hyd represents the eigen-transformed
observation vector, and z̄ and Rz are the new sample mean
and covariance matrix, respectively.

•The distribution of the test statistic in (3) is given by

2(D − P )ξ ∼
χ

2
2P , under H0

χ2
2P (λ), under H1

, (4)

where the non-centrality parameter is given as
λ = 2DµHSHBHAU1[UH

1 A
HΓAU1]−1UH

1 A
HBSµ.

Distribution of the Test Statistic
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Figure 2: Normalized histogram (empirical PDF) and the analytic PDF
underH0 andH1, with SNR = −10 dB, CNR = 10 dB, number of samples
per snapshot N = 8, and number of snapshots D = 200.

SNR = 10 log10
µHSHSµ

σ
CNR = 10 log10

Tr{Σ}
σ

.

Numerical Results

In our simulation results, we fix number of samples N = 8,
probability of false alarm PFA = 10−3, and CNR = 10 dB.
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Figure 3: Probability of detection curves for unknown and known signal
information matrix.

Observation:
The proposed detector closely matches the performance of the
oracle detector, however, it is important to note that the oracle
detector does not require large number of snapshots.
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Figure 4: Probability of detection curves for varying number
of snapshots.

Observation:
The performance of the detector improves as the number of
samples increases, at the expense of longer integration time.
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